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A horizontal channel of infinite length and depth and of constant width contains 
inviscid, incompressible, two-layer fluid under gravity. The upper layer has constant 
finite depth and is occupied by a fluid of constant density p*. The lower layer has 
infinite depth and is occupied by a fluid of constant density p > p*. The parameter 
E = @/p*)-  1 is assumed to be small. The lower fluid is bounded internally by an 
immersed horizontal cylinder which extends right across the channel and has its 
generators normal to the sidewalls. The free, time-harmonic oscillations of fluid, which 
have finite kinetic and potential energy (such oscillations are called trapped modes), are 
investigated. Trapped modes in homogeneous fluid above submerged cylinders and 
other obstacles are well known. In the present paper it is shown that there are two sets 
of frequencies of trapped modes for the two-layer fluid. The frequencies of the first 
finite set are close to the frequencies of trapped modes in the homogeneous fluid (when 
p* = p). They correspond to the trapped modes of waves on the free surface of the upper 
fluid. The frequencies of the second finite set are proportional to e, and hence, are 
small. These latter frequencies correspond to the trapped modes of internal waves on 
the interface between two fluids. To obtain these results the perturbation method for 
a quadratic operator family was applied. The quadratic operator family with bounded, 
symmetric, linear, integral operators in the space L,( - co, + co) arises as a result of two 
reductions of the original problem. The first reduction allows to consider the potential 
in the lower fluid only. The second reduction is the same as used by Ursell (1987). 

1. Introduction 
Trapped modes of waves on the free surface of a homogeneous fluid are well knowh. 

By trapped modes we mean the free, time-harmonic oscillations of the fluid decaying 
to zero at infinity. In the case of modes trapped in a channel, waves have finite kinetic 
and potential energy. The first explicit solution for trapped modes of, so-called, edge 
waves was discovered by Stokes (1846). He showed that a wave may progress over a 
sloping beach along a straight coastline with the motion decaying exponentially in the 
offshore direction. The existence of trapped modes in a channel above a submerged 
horizontal cylinder spanning the sidewalls was first established by Ursell (1951). He 
proved that there is a finite set of frequencies of trapped waves below a certain cutoff 
frequency, if a circular cylinder of a sufficiently small radius is immersed in deep water. 
Soon after that, Jones (1953) generalized Ursell's result to cylinders of arbitrary but 
symmetric cross-section, and finite water depth. In 1987 Ursell gave the new proof of 
these theorems. Extensive numerical results were obtained by McIver & Evans (1985) 
for trapped modes above a circular submerged cylinder. They found that only a single 
mode exists for a depth of submergence of the cylinder greater than about 1.07 of its 
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radius. As the depth of submergence is decreased, further trapped modes appear. 
Martin (1989) also investigated trapped modes numerically. 

Trapped modes also exist if there is a crest on the channel bottom (see Jones 1953; 
Bonnet & Joly 1990 and references in the last paper). However, in the case of a hole 
in the channel bottom trapped modes do not exist as was noticed by Vainberg & 
Maz’ya (1973). McIver (1991) proved that there are no trapped waves if the cylinder 
is semi-immersed and satisfies John’s condition. This result can be improved using the 
version of Maz’ya’s identity for surface-piercing bodies suggested by Kuznetsov 
(1991). Callan (1990) and Callan, Linton & Evans (1991) demonstrated that trapped 
modes exist in the presence of some other submerged obstacles. 

One can see that the problem of trapped modes in homogeneous fluid has been 
investigated rather well. At the same time the author knows of no paper treating the 
trapped modes problem for a two-layer fluid, The importance of such investigations 
can be recognized from the following remark by Friis, Grue & Palm (1991): ‘Long 
underwater tube bridges [ . . . ] are proposed to be constructed across Norwegian fjords 
and straits’. It is well known that these fjords often are occupied by two layers of fluid. 
The upper layer contains fresh water the lower layer contains salt water which has a 
density slightly greater than the fresh water. 

Now, the contents of the paper will be briefly summarized. In $2 the statement of the 
problem is given. Section 3 is devoted to the reduction of the original problem to one 
which has only one unknown potential, which describes motion in the lower fluid. This 
is performed with the help of the Fourier transform. The next section, 4, contains the 
second step of the reduction. Using the method developed by Ursell(l987) and based 
on the special Green function we get a family of operators involving the eigenparameter 
quadratically. The operators involved are bounded, symmetric, integral operators in 
the space L2( - co, + a). Their properties are investigated in the Appendix. There is a 
small parameter in the family, since it is assumed that the difference between the 
densities of the lower and upper fluids is small. Then it is reasonable to apply a 
perturbation method. This is all the more convenient because the unperturbed square 
operator pencil is degenerate and one of its eigenvalues is equal to zero. The 
perturbation procedure is developed in $ 5 .  As a result we find, under some restrictions, 
that the quadratic operator family has two finite sets of positive eigenvalues. There is 
a simple illustration which makes the results of $ 5  very clear. Let us consider the 
quadratic equation 

where a,, a, b > 0 and E is a small positive parameter. The limit equation (as B +  0) 

has two roots 

The expansions of the roots of the perturbed equation are 

(ao+Ea)x2-b(l+E)x+E = 0, 

aoX2-bX =x(a0x-b)=O 

do) 0 = 0, x?) = b/ao. 

1 
b a0 a: b 

b b2(ao - a) - a0 + 0(€2 ) .  xo = - € + 0 ( € 2 ) ,  x+ = -+ 
Then these roots are positive, if B is sufficiently small. 

The results of $ 5  are essentially similar to this example. The perturbed quadratic 
family has two finite sets of positive eigenvalues {v(+)} and {do)}. The first set is 
generated by positive eigenvalues of the unperturbed pencil. The second set is 
generated by the zero eigenvalue of the unperturbed pencil. Section 6 contains a 
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discussion of the hydrodynamical meaning of these eigenvalues. The set { v(+)} gives the 
frequencies of trapped modes of waves on the free surface of the upper layer. These 
frequencies are close to the frequencies of trapped modes of waves on the surface of 
homogeneous fluid without an interface. The frequencies of the second set {v(O)} are 
proportional to the small parameter and correspond to the trapped modes of internal 
waves on the interface between the two layers. There is a rough but informative 
estimate of a quotient of frequencies of trapped modes of internal and surface waves 
in $6. 

A rigorous mathematical justification of the perturbation procedure from $ 5  can be 
obtained by means of some results in general perturbation theory for linear operators 
in Hilbert space (see, e.g. Friedrichs 1965; Kato 1966). This theorem will be published 
in another paper. 

2. Statement of the problem 
We consider a channel of infinite (for simplicity) depth wave vertical sidewalls. It is 

occupied by two-layer fluid. Fresh water with density p* occupies the upper layer 
whose depth (without loss of generality) can be assumed to be equal to one. 

We choose (x, y ,  z)-coordinates with the y-axis directed upwards and with the (x, z)- 
plane coinciding with the undisturbed interface between the two layers (see figure 1). 
The sidewalls lie in the planes {z = fb}. 

Salt water with density p > p* occupies the lower part of the channel and contains 
a cylinder spanning the sidewalls. It has constant cross-section D, and its generators are 
parallel to the z-axis (see figure 1). 

We shall use the linear theory of surface waves and we assume that E = p/p* - 1 is 
a small parameter. We denote by $(x, y ,  z, t )  (q5*(x, y ,  z ,  t ) )  the time-dependent velocity 
potential for the lower salt (upper fresh) water. These potentials must satisfy the 
following relations : 

V2#* = O  in w*, Vzq5 = O  in W, 

$E+g$,*=O when y = l ,  a$/an=O on S; 
q5,* = 0 when z = f b ,  q5z = 0 when z = k b, ] (1) 

I (2) 
q5: = q5u when y = 0, 

P ( A t  +g#,> = P*($t*t +s#,*) when Y = 0. 
Here g is the acceleration due to gravity and n is the unit normal to the cylinder surface 
S directed into W. Relations (1) and (2) are the usual ones in the linear surface wave 
theory. We mention only that the conditions (2) describe the continuity of the normal 
component of the velocity field and of the pressure across the interface. 

Solutions of (l), (2) corresponding to waves of radian frequency w and of 
wavenumber k along the z-axis have the form 

(3) 1 $(x, y ,  z, t )  = exp ( - i w t )  u(x, y )  cos kz, 
$*(x, y ,  z, t )  = exp (- iwt) u*(x, y )  cos kz. 

To satisfy the boundary conditions on the sidewalls we have to put 

k=nn/b,  n =  1,2,3 ,.... 
We can take sinkz instead of coskz in (3). In what follows we suppose k to be 
prescribed, but its value is an arbitrary positive number. 
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I W* 

I z = - b  

FIGURE 1. (a) Cross-section of the channel; (b) view from above. 

Substituting (3) into (1) and (2), we obtain 

u&+ut, = k2u* in wh, 

u,*-vu*=O when y =  1, au/an=O on S ;  
u,,+u,, = k2u in W,)  

(4) 

u,* = u, when y = 0, (5  4 
p*(uy* - vu*) = p(u, - vu) when y = 0, (5b) 

where v = d/g. 
For trapped-mode solutions the motion must decay at large distances: 

u*, IVu*l+ 0 as 1x1 + 00, 

u,IVul+O as Ix+iyl+oo. 

More precisely, the kinetic and potential energy of surface and internal waves should 
be finite. 

~~{[u*(x,O)]'+[u*(x, l)]'}dx+ IVu*ladxdy < 00, 

J-, u2(x, 0) dx+ 1 IVu(' dxdy < co. 

Thus, we have the homogeneous boundary value problem with the spectral parameter 
v, which enters into the conditions on the free surface of upper fluid and on the 
interface. The last condition contains both the unknown functions u and u*. Our aim 
is to reduce the problem with two unknown functions to a problem which can be 
treated by the usual tools of the spectral theory of linear operators (see Kato. 1966, ch. 
4). The above-mentioned condition on the interface will play the essential role in the 
reduction, the first step of which will be made in the next section. 

+oo I,. ] (6) 

W 

3. Reduction to the problem in the lower layer 
Let us reduce the problem (4)-(6) with the unknown pair (u*, u) to a problem with 

one unknown function u. We have to determine u* assuming that u,(x,O) is given in 
( 5 4 .  
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Using the Fourier transform 

zi*(fl,y) = rm u*(x, y )  e-'"[dx 
-m 

we get u"* YY = (k2+%)6*, 0 < y  < 1, 

zi;-vu"* = 0, y = 1, 
ii,* = u",, y = o .  

The general solution of (7) is 
u"*(f;, y )  = C,(Q cosh hy + C,(Q sinh hy, h = (k2 + 6,);. 

Conditions (8) and (9) yield the system 
( A  sinh h - v cosh A) C, - (v sinh h - h cosh A) C, = 0, 

hC, = ziy. 
Hence, 
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z i  vsinhh-hcoshh 
A hsinhh-vcoshh' C,(Q = !!I! A Cl(Q = 2l 

and 

(10) 
u" (&O)vsinhh(l-y)-Acoshh(1 -y )  

h sinh A - v cosh h u"*(E,v) = A 

Applying the Fourier transform to (5b) and taking into account (5u), we obtain 

We substitute (10) into the last equality and arrive at 
au", = v[(l +a)zi-u"*], y = 0. 

I u", y = 0. (1 + E )  vh(A tanh h - v) 
(v2 + ah2) tanh h - (1 + E )  vh 2.4, = 

Thus, the problem for u includes 
u,,+uyy = k2u in W, 

aupn = 0 on S, 

tanh - 
( v2 + ah2) tanh h - (1 + e) vh ii d$ when y = 0. (1 3) 

The trapped-mode solution must also satisfy (6). In (13) we have a pseudo-differential 
operator depending on the spectral parameter v, and parameters k, E which we consider 
to be prescribed. Moreover, 6 is a small parameter. 

Note that the problem (11)-(13), (6) is equivalent to the original problem (4)-(6). 

4. Reduction to the spectral problem for a quadratic operator family 
Following the method developed by Ursell(l987) we use the Green function g(x, y; 

a,O) which satisfies the modified Helmholtz equation (11) with the boundary 
conditions (12) and 

g,=O when y = O  and x +  a, (14) 
g+O as x2+y2+co. (1 5 )  

sup{g(x,y; a ,0 ) -Ko(k [ (x -a )2+y2]~) }  < a. (16) 

Furthermore, the function g has a source singularity at (a, 0), i.e. 
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Here KO is the Macdonald function which has the representation 

&(z) = Jr exp ( - z cosh p )  dp 

and the behaviour 

K,(z)- -1ogz as 2 4 0 .  

Ursell (1987) proved that g exists, and it can be obtained in the form 

+ ( y  - Y(s))’~)  + K0(k[(x - X(S))~ + ( y  + Y(S) )~; ) }  ds. 
Here s is the arclength along S,  while the points of S have coordinates X(s), Y(s). The 
function m(s, a) is the unique solution of the Fredholm equation of the second kind 

Ko(k[(X(s’) - a)2 + P(s919, a + &(k[(X(s’) - X(S)), + (Y(s’) + Y(S))’]$)} ds = - - an(s’> 

where n E ( - 00, + co) is a parameter. 

family we seek u in the form 
To reduce the problem (6), (1 1)-(13) to the spectral problem for a quadratic operator 

where p E L,( - co, + co). The single-layer Green potential (17) clearly satisfies the 
equation (1 l), boundary condition (12) and the condition at infinity (6). Moreover we 
have from (14) and (16) 

p when y = O .  (18) avP - 
aY 
-- 

Substituting the potential (17) into the condition (13), we get in view of (18) 

A(A tanh h - v) 
(vz + €Az) tanh A - (1 + E )  vA p = -JII eizt (G)d< when y = O .  (19) 

Here 

Application of the Fourier transform to (19) gives 

(6) (5, 0). 
(1 + e) vA(A tanh A - v) 

’(’ = (vz + €A2) tanh h - (1 + E )  vh 



Trapped modes of internal waves in a channel 119 
This relation can be written in the form of the square operator pencil with respect to 
the spectral parameter Y. We have 

~ ~ [ h - ~ , E + ( l  +~) (A-~co thh) (~ ) ] -v ( l  +~)[(A-'cothA)jZ+(G)]+e,E = 0. 
If we apply the inverse Fourier transform, then we arrive at the square pencil 

1 v2 [(2k)-' Sm exp (- klx - al) p ( r )  d a  + (1 + e) L(k, klx - al) (Vp) (a, 0) d a  
-m 

-v(1 +e)[('mL(k,klx-al)p(a)da+(Vp)(x,O) -CC 1 +~p(x) = 0. (21) 

Here we used the relation between the convolution operator and the Fourier transform 
(see, e.g. Vladimirov 1971) and the well-known formula (see e.g. Gradshtein & Ryzhik 
1965, 3.723.2) 

Also, we have introduced the kernel 

Below, we shall employ the following notations for the operators involved in (21) 

A, = A + C, A = LV, B = L + V, 
where 

vp = (Vp)(x, 0) (see (20)), 

Cp = (Cp)(x) = (2k)-l exp(-klx-aI)p(a)da. SI: 
We consider all these operators in the space L,(- co, +a). Their properties are 
described in the Appendix. 

The spectral problem for the square operator pencil (21) is equivalent to the 
boundary-value problem (1 1)-(13), (6) which contains the spectral parameter in the 
boundary condition (13) on the interface. 

5. Perturbation method for the eigenvalue problem 

pencil in L,( - 00, + co) 
In the previous section we obtained the spectral problem for the square operator 

v2(A0+&4)p-v(1 +€)Bp+€p = 0. (22) 
Since there is the small parameter e on the left-hand side, then this operator pencil will 
be called the perturbed pencil. The unperturbed one is 

(23) v2A0 - VB = v(vA, - B). 
This pencil is degenerate. Obviously, it has an eigenvalue v = 0. Other eigenvalues 
should be determined from 

vA,p-Bp = 0. (24) 
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The spectral problem (24) is another form of the usual problem of trapped modes in 
a channel with homogeneous fluid of density p. The fluid has infinite depth, the mean 
level of the free surface coincides with y = 1, and the cylinder is submerged to a depth 
which is strictly greater than one. 

To recognize this character of (24) one has to return to the boundary-value problem 
(4)-(6). If e = 0, then from ( 5 )  we get 

u,* = uy and u* = u when y = O .  

Hence u* is the unique continuation of u to the strip w*. After such a continuation the 
function u is a solution of the following boundary value problem: 

u,, + uyy = k2u in w‘c u (mD), 
uy-vu = 0 when y = 1, (26) 

au/an = 0 on S, (27) 

IVuI2 dx dy < co. (28) rm ua(x, 1) dx + 1 
-m w* u (W\D) 

Thus, the spectral problem (24) is equivalent to (25)-(28) with the spectral parameter 
in (26). This problem was investigated in detail by Ursell(l987). He reduced (25)-(28) 
to the spectral problem for a bounded, symmetric, integral operator on the free surface 
and proved that there are always a finite number of positive point eigenvalues below 
a certain cutoff frequency. Hence, the problem (24) has the same spectral properties. 
However, (24) differs in form from the spectral problem that arises in Ursell’s (1987) 
paper, because our integral operators are defined on the immersed horizontal line 
instead of the free surface. 

Since there is the small parameter E in (22), it is convenient to apply the usual 
perturbation technique. Let us represent the eigenvalue and the eigenfunction in the 
form (see e.g. Friedrichs 1965). 

I v =  vo+evl+E2v,+ ..., 
p = ~ o + € p 1 + E 2 ~ 2 +  . . . . 

Substituting these expansions into (22) and equating the expressions multiplied by so, 
d, s2,. . . respectively, we obtain the system 

VO@O A0 P1- BPJ = (v1+ Vo)  BPO -Po - VO(2Vl A0 Po + Vo 4 0 ) Y  (3 1) 
vLl(v0 A0 Pa - BP2) = (V2 + BPO + (v1+ vo) BPl -P1- v; A0 Po 

- 2vo(v2 AOPO + v1 4 0 )  - vo(2v1 AOPl + Yo 4%) (32) 

Equation (30) contains the unperturbed operator pencil (23), which has a zero 
eigenvalue and the finite set of positive eigenvalues satisfying (24) as was pointed out 
above. 

Let us first construct the expansions (29), starting from the non-degenerate positive 
eigenvalue vr), and from the corresponding eigenfunction of (24) p r ) .  The eigenvalue 
is non-degenerate if the equation 

VP’A,/A-B~ = f 
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has a solution for every right-hand sidef, which is orthogonal to ,I&) 

(A,$)) = Smf(x)pr ) (x)dx  = 0. 
-m 

We assume that p r )  is normalized: 
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J --M 

It is clear that the perturbed eigenfunction p(+) cannot be found from (30)-(32), . . . 
uniquely, since we can multiply each equation by a different constant. As usual (see e.g. 
Friedrichs 1965) we introduce the linear condition 

(p(+) ,pr) )  = r p(+)(x)pr)(x)dx = 1, 
+m 

which imdies 
J -m 

(pY),pF)) = (&’,/!p) = . . , = 0. 

Now, the system (30)-(32), . . . can be successively solved with respect to pr) ,  ,u!j+) ; . . . . 
Equation (3 1) is solvable if its right-hand side is orthogonal to ,LAC). This gives the value 

where (,ur), B,ul;t)) > 0, since B is a positive operator (see the Appendix). Here (30) and 
the definition of A,  should be taken into account. When pi+) is obtained, v!$) and pi+) 
can be determined in the same way, and so on. 

Thus, the eigenvalue v(+) of the perturbed problem close to the positive eigenvalue 
v c )  of the unperturbed problem can be found to any necessary accuracy. It is clear that 
Y(+) > 0 if E is sufficiently small, and there is a finite set {,(+)I of such positive 
eigenvalues. 

Now, let us construct the expansions (29), starting from vulp) = 0, which is an 
eigenvalue of (30). Then, the system (31)-(32), . . . can be rewritten as follows: 

v1“’ Bplp’ - p p  = 0, (33) 
(34) via) BPr) -,,,) = (0) 2 ( 0 )  - (0 )  - ( 0 )  

[VI 1 AOPO Po v2 BPP, 

In (34) equation (33) has been taken into account. 
According to (33), we have the usual eigenvalue problem of finding a pair (vr), pulp)). 

It has a finite set of positive eigenvalues if k is large enough (see the Appendix). Let us 
choose one non-degenerate eigenvalue v?), and let pp) be the corresponding normalized 
eigenfunction. As above, we require 

which yields 

This allows the system (34), . . . to be solved successively with respect to p?), pf‘), . . . . 

value 

(p(O), p.Ip’) = 1, 

(pY),pulp)) = (pp,pp)  = . . . = 0. 

Equation (34) is solvable, if its right-hand side is orthogonal to pr) .  This gives the 

S FLM 254 
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where (pr) ,  Bpr))  > 0, because B is a positive operator (see the Appendix). 
Since v y )  > 0, then 

e v p  + €%?) + . . . > 0 (35) v(o) = 
if E is small enough. 

Thus, the following conclusions can be drawn. 
(i) Under the assumptions that k is large enough and E is small the perturbed square 

pencil (22) has two finite sets of positive eigenvalues (v(+)] and {do)}.  
(ii) If eigenvalues { vc)] of (24) are non-degenerate ({ vl;") is a h i t e  set), then each of 

them induces a positive eigenvalue v(+) of the form (29). 
(iii) If characteristic values {vy)} of (33) are non-degenerate ({vp)} is a finite set if k 

is large enough), then each of them induces a positive eigenvalue do) of the form (35) 
for sufficiently small E .  

6. Discussion 
What is the hydrodynamical meaning of the eigenvalues obtained in the previous 

section? Since the eigenvalue v(+) is close to the eigenvalue v r )  and the latter 
corresponds to a trapped mode on the surface of homogeneous fluid without an 
interface, then v(+) corresponds to a trapped mode of waves on the free surface of two- 
layer fluid. The eigenvalue do)  is proportional to € and there are no such eigenvalues 
for the homogeneous fluid. Consequently, this eigenvalue corresponds to a trapped 
mode of internal waves on the interface between two layers. 

It is interesting to estimate the frequency of trapped mode of internal waves. 
According to the Theorem from the Appendix, v y )  is close to the characteristic value 
of the operator 2Vif k is large enough. It was shown in Ursell(l987) that characteristic 
values of Vcorrespond to trapped modes of waves on the free surface of the lower fluid 
in absence of the upper fluid. If we denote by mi the frequency of a trapped mode of 
internal wave and by o, the frequency of a trapped mode of surface waves for the lower 
fluid in the absence of the upper fluid, then we have approximate equality 

20: x w:e or oi/o, x (e/2)+, 

which is valid if k is large enough. 
For three values of the parameter E ,  which describes some real interfaces between 

fresh and salt water one can find the following corresponding approximate quotients 
%I% : 

e 0.04 0.02 0.01 
wi/ws 0.14 0.10 0.07. 

This decrease in the frequency of trapped internal waves is similar to the decrease in 
the velocity of internal waves compared with the velocity of surface waves described in 
Lamb (1932, Art. 23 1). In the last case the velocity ratio is exactly equal to [e/(2 + e)];. 

The method developed above in the case when the lower fluid has infinite depth, is 
valid without any changes for a two-layer fluid with both layers of finite depth. One has 
only to take another Green function at the second stage of reduction. Such a Green 
function for the fluid of finite depth was constructed by Ursell (1987). 

The case when the cylinder is immersed totally in the upper layer is more 
complicated. This problem can be easily reduced to the boundary-value problem which 
involves only the potential u* for the upper layer. However, apart from the usual 
condition on the free surface 

u3/*-vu* = 0 when y = 1, (36)  
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the spectral parameter v will be included in a pseudo-differential operator in the 
boundary condition on the interface. Then we have to use another Green's function 
satisfying (36). Such a kind of Green function was also constructed by Ursell (1987), 
but this Green function depends on v. Hence, one obtains a spectral problem with an 
operator function depending on v in a way which is not so simple as square operator 
pencil. 

The author thanks Dr J. Grue for the possibility to visit the University of Oslo where 
this work was completed. 

Appendix. Properties of the operators from $4 

kernels. 
We first consider the properties of C and L, since these operators have explicit 

PROPOSITION 1. The operators C and L both are symmetric, positive and bounded 

Proof. Due to Parseval's theorem and to the definition of C, we have 

operators. 

Now, it is clear that (C,u,p) > 0, if y + 0. Then C is a positive, symmetric operator. 
Furthermore, (k2 + cZ))-' < kP2. Hence, 

which means that C is a bounded operator. 
In the same way 

where h = (k2+f12)t. Then L is a positive, symmetric operator. 
Since 

-- cothh - - - 1 
Asinh2h ha 

then cothh cothk 
G -  h k 

and L is a bounded operator, whose norm does not exceed k-lcothk. 

V can be summarized in the following two propositions. 

0 
The operator V was introduced and investigated by Ursell(l987). The properties of 

PROPOSITION 2. The operator V is a symmetric, positive and bounded operator in 

We denote by 11 YII the norm of V in L2(- a, + GO). If we consider the spectral 

La( - CO, + a). 
problem 

then we have 
( V - h I ) p  = 0 

5-2 
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PROPOSITION 3. The spectrum of V is real, continuous for 0 < h < k-l and discrete for  
k-l < h < 11 V 11. Moreover, there exists at least one point eigenvalue when S is not an 
empty set. 

From Propositions 1 and 2 it immediately follows that 

COROLLARY 1. Operators A ,  A ,  and B are bounded and B is symmetric, positive. 

This Corollary follows from the definition of A ,  A ,  and B. 

THEOREM. I f k  is large enough, then there exists at least one positive point eigenvalue 
of the operator B. The number of positive point eigenvalues of B is finite. These 
eigenvalues are close to the point eigenvalues of the operator 2V. 

Proof. Let us write 
B = L+ V = 2V+ ( L -  V) .  

Since the operators involved are symmetric, positive and bounded, then according to 
the general perturbation theory (see Kato 1966) it is enough to show that the norm of 
the operator L- V is small, if k is large enough. Really, from the Proposition 3 it 
follows that the operator 2V has a finite number (at least one) of positive point 
eigenvalues. Hence, if L- V has a small norm, then the eigenvalues of B exist and are 
positive and close to the eigenvalues of 2V. 

The kernel of L can be represented in the form 

From Gradshtein & Ryzhik (1965, formula 6.671.14) we have for the Fourier transform 
of the Macdonald function 

2~0mK0(kx)c0sxsdx = 71:/(k2+g2)t = x / n .  

Comparing this formula with the previous one, we find 

L(k, klxl) = n-lK,(klxl) + N ( k  klxl), 

where 

Thus, the operator L-  V has the kernel 

N(k, klx - GI) - 7c-1M(x, a). 
Here we also used (20). We shall demonstrate that each of the operators with kernels 
N and M is small if k is large enough. 

Since the kernel N depends on Ix- al, it is convenient to apply Parseval’s theorem. 
Then, we have 

Considering the function 
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we conclude that it is monotonically decreasing for x > 0, since 

- xe-”( 1 - e-”) - e-$[( 1 - e-.) + xe-”1 
x2(1 -e-“ 1 < 0. f’(4 = 

Hence, the norm of the operator with the kernel N(k, klx - al) does not exceed the value 

2 e-2k -___ k 1 -e-2k’ 
which is small if k is large enough. 

Schwarz inequality we can write 
Now, let us estimate the norm of the operator with the kernel M(x, a). Due to the 

r m d x ( r m M ( x , ~ ) p ( a ) d a ) i  -m -m < ~ ~ p ~ ~ 2 ~ m ~ ~ ~ ( x , a ) d x d ~ .  -03 -a 

Then according to (20) and the Schwarz inequality 

Hence the norm of the operator with the kernel M(x,  a)  is small for large enough values 
of k, because of the asymptotic behaviour of the Macdonald function at infinity. Here 
we used the fact that the distance between S and the interface is positive. 0 
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